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ABSTRACT

Interpretation of polarimetric radar measurements in rainfall such as differential reflectivity and specific
differential phase shifts depends on the mean raindrop shape–size relationship. Currently, semiempirical relations
between the oblateness and the diameter of the drop are being used. This paper presents an algorithm to obtain
the mean shape of the rain drops from polarimetric radar measurements, namely, the reflectivity factor, the
differential reflectivity, and the specific differential phase shift. The accuracy of the estimate mean drop shape
depends on the measurement accuracies of polarimetric radar observations. Based on asymptotic error analysis
and simulations it is shown that the mean raindrop shape can be estimated to an accuracy of 10%. The raindrop
shape estimator algorithm developed in this paper is applied to polarimetric radar data collected by the CSU–
CHILL radar during the 28 July 1997 Fort Collins, Colorado, flood.

1. Introduction

The mean shape of raindrops plays a critical role in
the interpretation of the polarimetric radar measure-
ments. The mean shape raindrop also plays an important
role in the development of algorithms to estimate rain-
fall rate and liquid water content based on reflectivity
factor (ZH), differential reflectivity (ZDR), and specific
differential propagation phase (KDP). The equilibrium
shape of a raindrop, falling at its terminal fall speed, is
determined by the balance between the forces due to
surface tension, hydrostatic pressure, and aerodynamic
pressure from airflow around the drop. The shapes of
raindrops have been studied theoretically by Green
(1975) and Beard and Chuang (1987), experimentally
in wind tunnels by Pruppacher and Beard (1970), and
in natural rainfall using aircraft probes by Chandrasekar
et al. (1988) and Bringi et al. (1998). The experimental
results of Chandrasekar et al. (1988) and Bringi et al.
(1998) were fairly consistent with the model results of
Beard and Chuang (1987). All of the above studies as
well as polarimetric radar measurements at multiple po-
larizations show that the shape of raindrops can be ap-
proximated by an oblate spheroid, described with an
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axis ratio (b/a) and equivolumetric spherical diameter
D, where a and b are the major and the minor axes of
the drop, respectively. A commonly used approximation
relating the axis ratio of a raindrop to the diameter is
given by (Pruppacher and Beard 1970):

b/a 5 1.03 2 0.062D. (1)

In addition, nonlinear relations are available to model
axis ratios of raindrops (Andsager et al. 1999). The ex-
perimental results of Bringi et al. (1998) showed that
the axis ratios were higher than the model given by (1)
for D , 3 mm. However, for D . 4.5 mm the mean
axis ratios were smaller than those given by (1). The
above results were obtained after careful and tedious
analysis of aircraft-mounted 2D imaging probe data. It
would be very useful to obtain an estimate of the mean
shape–size relation from polarimetric radar measure-
ments in order to study any variability in the mean shape
of the raindrops in different storms as well as different
regions of storms.

The objective of this paper is to derive an algorithm
to estimate the mean shape of raindrops from polari-
metric radar data. The paper is organized as follows.
Section 2 defines the mean shape model for raindrops,
whereas section 3 describes the effect of raindrop shape
on polarimetric radar measurements. The estimator for
mean raindrop shape from radar measurements is de-
veloped and its accuracy and sensitivity are evaluated
in section 4. The estimator developed in this paper is
applied to data collected by the CSU–CHILL radar dur-
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ing the 28 July 1997 Fort Collins, Colorado, flood and
the results are presented in section 5. Section 6 sum-
marizes the important results of the paper.

2. Mean raindrop shape model

Polarimetric radar measurements, wind tunnel mea-
surements, as well as in situ observations using airborne
2D probes indicate that the shape of raindrops can be
approximated by oblate spheroids described by semi-
major axis a and semiminor axis b. The axis ratio of
the raindrop (r) is given by

b
r 5 . (2a)

a

The equivolumetric spherical diameter is defined by equat-
ing the volume of the spheroid to that of a sphere by

p 4
3 2D 5 pa b. (2b)

6 3

As noted before, the shape versus size relation can be
approximated by a straight line given by

r 5 1.03 2 bD. (3)

In Eq. (3) r 5 1 when D # 0.03/b, where b is the
magnitude of the slope of the shape–size relationship
given by

dr
b 5 2 . (4)

dD

The approximation given by (1) corresponds to b 5
0.062 mm21, which is close to the equilibrium shape–
size relation, and therefore we denote it by be. We note
b . be indicates that raindrops are more oblate than
equilibrium, whereas b , be indicates raindrops are less
oblate (or closer to spherical) than equilibrium.

3. Polarimetric radar measurements: Sensitivity to
shape–size relation

The three commonly used polarimetric radar param-
eters are reflectivity factor at horizontal polarization
(ZH), differential reflectivity (ZDR), and specific differ-
ential propagation phase (KDP). Both the cloud model
and measurements of raindrop size distribution (RSD)
at the surface and aloft show that a gamma distribution
model adequately describes many of the natural varia-
tions in RSD (Ulbrich 1983):

N(D) 5 ncf (D) (m23 mm21), (5)

where N(D) is the number of raindrops per unit volume
per unit size interval, nc is the concentration, and f (D)
is the gamma probability density function (pdf), given by

m11L
2LD mf (D) 5 e D , (6)

G(m 1 1)

where L and m are parameters of the gamma pdf, and

G indicates gamma function (Abramovitz and Stegun
1970). The parameter N0 defined by Ulbrich (1983) is
related to nc as

G(m 1 1)
n 5 N . (7)c 0 m11L

The volume-weighted median drop diameter D0 can be
defined as

D `0

3 3D N(D) dD 5 D N(D) dD. (8)E E
0 D0

The diameter D0 can be written in terms of the param-
eters L and m as

3.67 1 m
D 5 . (9)0 L

The reflectivity factor ZH,V at horizontal (H) and vertical
(V) polarization can be expressed as

4l
6 23Z 5 s (D, b)N(D) dD (mm m ),H,V E H,V5 2p |k|

(10a)

where sH,V denote the radar cross sections at the two
linear polarizations; l is the wavelength; and k 5 («r

2 1)/(«r 1 2), where «r is the dielectric constant of
water. Similarly, the differential reflectivity (ZDR) and
specific differential phase (KDP) can be expressed as

s (D, b)N(D) dDE H

Z 5 10 log (dB) (10b)DR 10

s (D, b)N(D) dDE V

and

180l
K 5 R [ f (D, b) 2 f (D, b)]N(D) dDDP E H Vp

21(deg km ),

(10c)

where f H, f V are the forward scatter amplitudes at H
and V polarization states. It can be seen from (10a–c)
that for a given RSD, ZH, ZDR, and KDP can change with
shape–size relationship for raindrops.

According to (1), raindrops become more oblate when
the size is large. Therefore, the effect of varying shape–
size relationship should be more evident in the presence
of larger drops. The volume-weighted median drop di-
ameter D0 is a good indicator of the mean size of drops
in the distribution. The effect of varying shape–size
relations of raindrops is illustrated by the following
analysis. For a given RSD and at S-band frequency, we
compute the radar measurements ZH, ZDR, and KDP for
various b in the range of 0.02–0.1 in steps of 0.01. The
various shape–size relationships studied here are shown
in Fig. 1, where the dash–dotted line represents the equi-
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FIG. 1. The raindrop axis ratio (b/a) as a function of the equivolumetric diameter D for
different values of the slope b. The dash–dotted line represents the Pruppacher and Beard
relation.

FIG. 2. Averaged value of differential reflectivity (in linear scale),
as a function of median drop diameter (D0) for different values of
b, for various RSD.

librium relation (1). In Fig. 2 the behavior of ZDR (in
linear scale) is shown as a function of D0 for different
values of b. It can be noted that ZDR increases as D0

increases for any value of b (Seliga and Bringi 1976);
moreover, for a given D0, ZDR increases with b. Similar
behavior can also be obtained for KDP. As shown in Fig.
2, the sensitivity of ZDR to b is most dependent on D0.
Figure 3a shows the normalized variation of ZDR (in
linear scale) with respect to ZDR obtained from the equi-

librium relation (1) as a function of b for different values
of D0. For nearly spherical particles (b ù 0), the ZDR

value should be 0 dB or unity in linear scale. The nor-
malized bias for b ù 0 in comparison to be is determined
by the value of ZDR at b 5 0.062 so that it increases as
D0 increases (see Fig. 2). The range of ZDR difference
between nearly spherical drops (b 5 0.02) and equilib-
rium-shape drops varies between 0.84 and 1.89 dB de-
pending on D0. Similar arguments can also be made
when b . 0 so that normalized bias of ZDR increases
with D0 as we move farther from b ù 0. Figure 3b
shows similar analysis for KDP. For nearly spherical par-
ticles (b ù 0) and D0 # 1 mm KDP is approximately
zero and then the ratio between KDP with respect to KDP

at equilibrium axis ratio is nearly zero and the normal-
ized bias has the maximum negative value equal to 21.
By increasing D0, KDP increases and then the normalized
bias decreases. Similar results can be obtained for b .
0 so that the normalized bias decreases by increasing
D0. The reflectivity factor is fairly insensitive to rain-
drop shape–size relationships for b , be as shown in
Fig. 3b, whereas for b . be the change in ZH with b
is within 10%.

4. Algorithm to estimate raindrop shape–size
relation

The result of section 3 indicates that the observations
of ZDR and KDP are sufficiently sensitive to b, so that it
can be turned around into measurement. The estimator
of b is developed using the following procedure. First,
large number of Gamma RSD is simulated over a wide
range of the parameters N0, D0, and m, as suggested by
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FIG. 3. Normalized bias (a) on the differential reflectivity (ZDR), in linear scale, with respect to ZDR, and (b) on the reflectivity factor (ZH)
and specific differential phase (KDP) with respect to ZH and KDP, obtained from Pruppacher and Beard relation as a function of the slope b,
for the values of the median drop diameter D0 corresponding to 1 mm (solid line), 1.5 mm (dashed line), and 2 mm (dotted line).

FIG. 4. Scatter diagram between the slope b and the estimate b̂
computed by (12) in absence of measurement errors on radar ob-
servables.

Ulbrich (1983), chosen randomly in the following in-
tervals:

21 , m , 4 (11a)
3.210.216m 4.510.55m 23 212m10 , N , 10 (m mm ) (11b)0

0.5 , D , 2.5 (mm). (11c)0

In addition, for each RSD, ZH, ZDR, and KDP are com-
puted for various values of b ranging between 0.02 and

0.1. The above computations are done at S-band fre-
quency. Subsequently, nonlinear regression analysis is
performed to evaluate various functional forms to es-
timate b. The above analysis yields the estimator for b
at the S band given (Gorgucci et al. 1999a)

5 2.37 3 .20.377 0.396 0.093ZDRb̂ Z K 10H DP (12)

A scattergram between and the true value of b isb̂
shown in Fig. 4; it can be noted that (12) estimates b
fairly well. The data used in Fig. 4 have a correlation
of 0.996 with a normalized standard error (the root-
mean-square error normalized with the mean) of 3.6%.

a. Shape–size relation estimate in the presence of
measurement errors

The estimate given by (12) uses ZH, ZDR, and KDP.
These three measurements have completely different er-
ror structure. The ZH is based on absolute power mea-
surement and has a typical accuracy of 1 dB. The ZDR

is a relative power measurement and is the differential
power estimate between ZH and ZV. It can be estimated
to an accuracy of 0.2 dB. The KDP is the slope of the
range profile of the differential propagation phase FDP,
which can be estimated to an accuracy of a few degrees.
The subsequent estimate of KDP depends on the proce-
dure used such as a simple finite-difference scheme or
a least squares fit. Using a least squares estimate of the
FDP profile, the standard deviation of KDP can be ex-
pressed as (Gorgucci et al. 1999b)

s(F ) NDPs(K ) 5 Ï3 , (13)DP !NDr (N 2 1)(N 1 1)
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FIG. 5. Scatter diagram between the slope b and the estimate b̂
computed by (12) in presence of measurement errors on radar ob-
servables.

FIG. 6. Normalized standard error of the estimate computed byb̂
(12) as a function of the slope b.

where Dr is the range resolution of the FDP estimate
and N is the number of range samples within the path.
For large N we can see that s(KDP) decreases as N23/2.
For a typical 150-m range spacing, and with 2.58 ac-
curacy of FDP, the KDP can be estimated, over a path of
3 km, with a standard error of 0.328 km21. Thus, the
three measurements ZH, ZDR, and KDP have completely
different error structure. In addition, the measurement
errors of ZH, ZDR, and KDP are nearly independent. In
the following we use simulations to quantify the error
structure of the estimate of b. The simulation is done
as follows. Various rainfall values are simulated varying
the parameters of the gamma RSD over a wide range
of values, as suggested by Ulbrich (1983). For each RSD
the corresponding ZH, ZDR, and KDP are evaluated using
(10a–c). The random measurement errors are simulated
using the procedure described in Chandrasekar et al.
(1986). The principal parameters of our simulation are
as follows: 1) wavelength l 5 11 cm; 2) sampling time
PRT 5 1 ms; 3) number of samples pairs M 5 64; 4)
Doppler velocity spectrum width sy 5 2 m s21; 5) cross
correlation between H and V signals rHV 5 0.99; 6)
range sample spacing over the path where KDP is esti-
mated is 150 m; and 7) KDP is estimated over a path of
50 range samples, as a least squares fit on FDP mea-
surements. Figure 5 shows the scatter diagram of giv-b̂
en by (12) versus b in the presence of measurement
errors, using KDP values greater than 0.48 km21. The
scatter diagram of the data in Fig. 5 gives a correlation
coefficient of 0.97 and a normalized standard error of
9%. Finally, Fig. 6 shows the normalized standard error
of as a function of b, where normalized standard errorb̂
is defined as the root-mean-square error normalized with
respect to the mean. The results of Fig. 6 show that the

slope of the shape–size relation b can be estimated to
an accuracy of about 9% in the presence of measurement
errors in ZH, ZDR, and KDP. The appendix shows variance
computations of only due to measurement errors.b̂

b. Sensitivity of mean shape estimation to bias in ZH

and ZDR

Bias errors in ZH and ZDR can affect the estimate of
b. Bias errors in the measurements of ZH and ZDR will
remain even if extensive averaging is performed. The
term ZDR is a differential power measurement and its
bias can be estimated and removed easily (Gorgucci et
al. 1999b). However, ZH is based on absolute power
measurement and it is difficult to get the absolute cal-
ibration. Typically this can be known to an accuracy of
1 dB. Thus KDP is based on phase measurement and is
immune to calibration biases in fairly uniform rain me-
dium. The bias in due to bias errors in ZH and ZDRb̂
can be defined as

E [b̂(with bias in Z , Z )]H DRbias(b̂) 5 . (14)
E [b̂(with no bias in Z , Z )]H DR

Figure 7 shows contours of bias in the estimate of b as
a function of bias in ZH and ZDR. The contours line
marked 1 indicates no bias, and lines marked different
from 1 indicate overestimation (.1) and underestima-
tion (,1). Typically in a well-maintained system, bias
error in ZDR is less than 0.2 dB and bias in ZH is less
than 1 dB. Therefore, from Fig. 7 it can be seen that

can be estimated within 10% accuracy under thoseb̂
biases of ZH and ZDR.
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FIG. 7. Contours of bias in the estimate of the slope b as a function of biases in the reflectivity
(ZH) and differential reflectivity (ZDR). The contour line marked 1 indicate no bias, whereas
lines marked .1 indicate overestimation and ,1 underestimation, respectively.

TABLE 1. System characteristics of the CSU–CHILL radar.

Antenna
Antenna type
Antenna size
3-dB beamwidth
Gain
Sidelobe level
Polarization radiated
Feed

Center-fed paraboloid
8.5 m
1.18
45 dB
#227 dB
Linear, horizontal, or vertical
Dual-mode conical horn

Transmitter
Wavelength
Peak power
Pulse width
PRT
Type
Max unambiguous range
Max unambiguous velocity

10.7 cm
700–1000 kW
Steps of 0.1 ms up to 1 ms
800–2500 ms
Kystron, modernized FPA-18
375 km
634.3 m s21

Receiver
Noise figure
Transfer function
Dynamic range
Min detectable signal

3.4 dB
Linear
96 dB, 0–60 dB IAGC in 12-dB steps
2115 dBm

5. Data analysis

On the evening of 28 July 1997, the city of Fort
Collins was hit by a flash flood that caused fatalities
and extensively property damage. Mesoscale analysis of
this flood is described in Petersen et al. (1999). CSU–
CHILL radar recorded continuous data over the event,
collecting multiparametric measurements over 5 h. The
radar recorded measurements of ZH, ZDR, and KDP. The
characteristics of the CSU–CHILL radar that are rele-

vant for this paper are listed in Table 1. The application
of algorithm (12) is fairly straightforward, but numerous
details are important. A linear least squares fit was done
on the FDP observations to obtain one KDP estimate for
a 3-km path, whereas ZH and ZDR are computed as the
mean value of ZH and ZDR measurements on the same
path. These values of ZH, ZDR, and KDP were used in
(12) to estimate b. Only data from regions with KDP .
0.48 km21 were used to ensure good accuracy in the
estimate of b. A histogram of the various observed val-
ues of for reflectivity in the range of 40 to 45 dBZ,b̂,
is shown in Fig. 8a, where the mean and standard de-
viation of data are 0.061 and 0.01 respectively. The
standard deviation of data in Fig. 8a is fairly close to
measurement standard deviation, as shown in the ap-
pendix. Therefore, most of the spread in is due tob̂
measurement error. In addition, it can be seen that the
mean slope of shape–size relation shown in Fig. 8a is
close to the theoretical predictions as well as to exper-
imental observation reported in the literature so far
(Beard and Chuang 1987; Chandrasekar et al. 1988;
Bringi et al. 1998). Figure 8b shows similar results for
data corresponding to 45 dBZ , ZH , 50 dBZ. The
mean and standard deviation of the data shown inb̂
Fig. 8b are 0.057 and 0.008, respectively. Once again
it can be seen that most of the standard deviation is due
to measurement error, and the mean of 0.057 indicatesb̂
that the drops are less oblate than be perhaps due to
drop oscillations (Beard et al. 1983). Similar stratifi-
cation was continued for reflectivity ranging between
50 and 53 dBZ and for ZH . 53 dBZ. Figure 8c shows
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FIG. 8. (a) Histogram of observed values of the estimate computed by (12), for reflectivity factor ranging between 40 and 45 dBZ. Theb̂,
data referring to a flash flood that occurred over Fort Collins were collected by the Doppler and polarimetric CSU–CHILL radar. (b) Histogram
of observed values of the estimate computed by (12), for reflectivity factor ranging between 45 and 50 dBZ. The data referring to a flashb̂,
flood that occurred over Fort Collins were collected by the Doppler and polarimetric CSU–CHILL radar. (c) The mean value of the estimate

signed by star, and the corresponding standard deviation for reflectivity intervals 40–45, 45–50, and 50–53 dBZ and for reflectivity greaterb̂,
than 53 dBZ. The data referring to a flash flood that occurred over Fort Collins were collected by the Doppler and polarimetric CSU–CHILL
radar. (d) Observed shape–size relation for the values of mean computed for the reflectivity intervals corresponding to 40 , ZH , 45b̂
dBZ, 45 , ZH , 50, and for ZH . 53 dBZ. The data referring to a flash flood that occurred over Fort Collins were collected by the Doppler
and polarimetric CSU–CHILL radar.

the estimate of mean and its standard deviation as ab̂
function of reflectivity. The standard deviation was com-
puted for each case and was found to range between
18% and 13% around the mean. Figure 8d shows the
observed mean shape–size relations, stratified with re-
flectivity. It can be seen from Figs. 8c and 8d that the
axis ratios become progressively slightly less oblate in
comparison to equilibrium axis ratios probably due to
raindrop oscillations.

6. Summary and conclusions

The mean shape–size relation of raindrops plays an
important role in the interpretation of polarimetric radar
measurements. The polarimetric radar algorithms avail-
able in the literature have been developed for equilib-
rium axis ratios. A simple model was developed to de-

scribe the shape–size relation of raindrops in terms of
the slope (b) of the linear approximation to the shape–
size function. Subsequently, theoretical analysis was uti-
lized to quantify the variability in ZH, ZDR, and KDP due
to changes in b. The sensitivity of ZH, ZDR, and KDP to
deviation from equilibrium shape–size relation be was
studied. It was found that both ZDR and KDP were fairly
sensitive to changes in b, whereas ZH was insensitive
as expected. There was enough sensitivity to b in ZDR

and KDP that it could be turned around to a measurement.
An algorithm to estimate the slope of the shape–size
relation was derived. The algorithm can be used to es-
timate b from measurements of ZH, ZDR, and KDP. Error
analysis of the algorithm demonstrated that the algo-
rithm estimates b on the average to an accuracy of 9%,
when KDP is estimated over a path of 50 range bins with
a range spacing of 150 m. Polarimetric radar data col-
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lected by the CSU–CHILL radar was used to evaluate
the algorithm developed in this paper. The estimation
of b from radar data yielded values very close to the
equilibrium shape–size relation of raindrops. When the
data were stratified with reflectivity, the results indicated
that the drops became less oblate as reflectivity increas-
es, an indication of possible raindrop oscillation.
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APPENDIX

Variance in the Estimate of Mean Shape–Size
Relation (b)

The estimate for b is given by

5 3 ,a a1 2 2a Z3 DRb̂ cZ K 10H DP (A1)

where a1, a2, a3, and c are the coefficients given by
(12). The variance of b normalized to the mean value
can be expressed from perturbation analysis as

var(b̂) var(Z ) var(K )H DP2 25 a 1 a1 22 2 2b̂ Z KH DP

21 (a ln10) var(Z ). (A2)3 DR

Note that ZH can be measured to an accuracy of better
than 1 dB, ZDR can be measured to an accuracy of 0.2
dB, and standard deviation in the estimate of KDP is

given by (12). Assuming 20 range bins with range spac-
ing of 0.15 km and for a mean value of KDP of 0.868
km21, the normalized standard error (standard deviation
normalized with respect to the mean) of is 15%.b̂
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